Complexation with PdCl₂ causes ppfa to assume a conformation different from that observed in the crystal structures of the free ligand and the Rh(nbd) complex. There is a rotation of -65° about P-C(10) [-40° in (III)] and of -10° about C(9)–C(11) [-100° in (III)], compared with the free ligand. The rotation about P-C(10) brings one phenyl ring into proximity with the ferrocenvl moiety and forces this ring to be 'edge-on' to the Pd atom and the other ring to be 'face-on' [angles between the least-squares planes of the rings and of the coordination plane are 71(1) and $88.0(9)^{\circ}$ respectively]. The distortion from tetrahedral geometry of C(11) is less than in (III) (probably due to the smaller metal—N and -P distance in the PdCl₂ complex), which causes less strain in the formation of the six-membered chelating ring. Puckering parameters $[Q = 0.63 (2) \text{ Å}, \theta = 105 (2)^{\circ} \text{ and } \varphi = 64 (2)^{\circ} \text{ for the}$ sequence Pd-P-C(10)-C(9)-C(11)-N indicate that the metalla-ring has a distorted boat conformation.

Bond lengths and angles are generally as expected. The Fe atom is located near the line between the centroids [Cp(i)] of the cyclopentadienyl rings [angle Cp(1)-Fe- $Cp(2) = 176 \cdot 6 \ (2)^{\circ}$] and lies 1.67 (8) Å beneath the plane of the unsubstituted ring and 1.64 (6) Å above the plane of the substituted ring, as is commonly observed in ferrocenyl derivatives.

In the crystal packing, the two disordered $CDCl_3$ molecules only fill the space between the (ppfa)PdCl₂

molecules and have weak interactions [shortest intermolecular contacts: $Cl(2)\cdots D(1) = 2.45$ (2) and $Cl(1)\cdots D(2)(x,y,z-1) = 2.74$ (2) Å].

References

- BATELLE, L. F., BAU, R., GOKEL, G. W., OYAKAWA, R. T. & UGI, I. K. (1972). Angew. Chem. Int. Ed. Engl. 11, 138–140.
- CULLEN, W. R., EINSTEIN, F. W. B., HUANG, C. H., WILLIS, A. C. & YEH, E. S. (1980). J. Am. Chem. Soc. 102, 988–993.
- CULLEN, W. R. & YEH, E. S. (1977). J. Organomet. Chem. 139, C13-C16.
- DEEMING, A. J., ROTHWELL, I. P., HURSTHOUSE, M. B. & MALIK, K. M. A. (1980). J. Chem. Soc. Dalton Trans. pp. 1974–1982.
- EINSTEIN, F. W. B. & WILLIS, A. C. (1980). Acta Cryst. B36, 39-43.
- HAYASHI, T., KONISHI, M., KOBORI, Y., KUMADA, M., HIGUCHI, T. & HIROTSU, K. (1984). J. Am. Chem. Soc. 106, 158–163.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1984). SHELX84. Program for crystal structure determination. Univ. of Cambridge, England.
- SPEK, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. SAYRE, p. 528. Oxford: Clarendon Press.
- TAKENAKA, A., SASADA, Y., YAMAMOTO, K. & TSUJI, J. (1977). Bull. Chem. Soc. Jpn, 50, 3177–3181.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1986). C42, 550-553

Structure of [N,N'-4-Methyl-4-azaheptane-1,7-diylbis(salicylideneiminato)]copper(II) Benzene Solvate

By Renzo Cini

Dipartimento di Chimica dell'Università di Siena, Pian dei Mantellini 44, 53100 Siena, Italy

(Received 3 October 1985; accepted 26 November 1985)

Abstract. $[Cu(C_{21}H_{25}N_{3}O_{2})].C_{6}H_{6},$ $M_{r} = 493 \cdot 1$, monoclinic, $P2_1/a$, a = 13.095 (3), b = 16.671 (4), c = 11.532 (3) Å, $\beta = 93.78$ (4)°, V = 2512 (1) Å³, Z = 4, $D_x = 1.30 \text{ Mg m}^{-3}$, $\lambda (Mo K\alpha) = 0.7107 \text{ Å}$, μ $= 8.95 \text{ mm}^{-1}$, F(000) = 1036, T = 298 K, R = 0.073for 1746 unique observed reflections. The structure is similar to that of the analogous Co¹¹ compound. Crystals of both compounds are monoclinic and can be obtained from benzene solutions. The Cu atom is linked to three N and to two O atoms of the ligand and the coordination geometry is distorted trigonal bipyramidal. The O(1)–Cu–O(2) angle is $145.6 (3)^{\circ}$, 15.8° larger than the corresponding angle in the Co complex. The Cu-N(3) distance [2.337 (9) Å] is longer than the Co–N(3) length [2.15(1) Å]. Conversely, the other two Cu–N bond lengths [average 1.954(8) Å] are shorter than the corresponding Co–N distances [average 2.04(1) Å]. Again a disorder of the ligand's atoms bound to N(3) is present. The benzene molecule is almost coplanar with the equatorial coordination plane and lies in the proximity of the metal atom. An H atom belonging to the benzene molecule points towards the metal at a distance of 2.90 Å from the cation.

Introduction. Continuing structural investigations of N_*N' -4-methyl-4-azaheptane-1,7-diylbis(salicylideneiminato) (hereafter SALMeDPT)-metal complexes and their dioxygen adduct to understand the stereo-

0108-2701/86/050550-04\$01.50

© 1986 International Union of Crystallography

chemical requisites of the precursor, our recent attention was focused on the capability to add dioxygen shown also in the solid phase by a crystalline form (γ) of the SALMeDPT-Co¹¹ complex containing cocrystallized benzene molecules (Cini & Orioli, 1983; Zanello, Cini, Cinquantini & Orioli, 1983). The benzene ring proved to be very close to the metal centre and almost coplanar with the equatorial O(1), O(2), N(3) plane. These data suggested that a sort of activation of the metal centre by the solvent occurs. In fact, for two different forms (α and β) of the SALMeDPT-Co^{II} complex, which either have no benzene at all or the solvent molecule is far from the metal cation, no reactivity towards dioxygen was observed at T = 298 K and $P_{O_1} = 0.1 \text{ MPa}$ in the solid state (Cini & Orioli, 1982).

With the aim to obtain a deeper insight into the geometrical features of SALMeDPT-metal complexes containing benzene molecules, the preparation of single crystals suitable for the X-ray diffraction technique was undertaken for compounds containing divalent 3d metal ions. Here we wish to report the structural parameters relevant to the Cu^{II} species.

Experimental. SALMeDPT-Cu^{II} (200 mg) obtained as reported by Sacconi & Bertini (1966) was dissolved in hot benzene (10 ml). On cooling, well shaped darkgreen prisms separated. The compound was characterized by elemental analysis, and by infraredspectroscopy measurements.

The crystals undergo some efflorescence at room temperature probably due to a superficial loss of benzene. For this reason the crystals were stored below 273 K.

Crystal $0.20 \times 0.10 \times 0.10$ mm, sealed in a glass capillary; Philips PW 1100 four-circle diffractometer, graphite-monochromated Mo $K\alpha$ radiation; lattice parameters by least-squares refinement of 25 reflections $(20 \leq 2\theta \leq 25^\circ);$ intensity data $(-12 \leq h \leq 12,$ $0 \le k \le 16, 0 \le l \le 11$) recorded in θ -2 θ scan mode for $4 \le 2\theta \le 40^\circ$, scan speed 0.05° s⁻¹, scan width 1.6° background counted every 10 s; three standard reflections (630, $\overline{630}$, $\overline{630}$) measured every 120 min showed a maximum 10% variation; 2166 reflections measured and empirically corrected for intensity decay; Lp corrections, ψ scans with minor variations of intensities, no absorption correction, 1746 unique reflections with $F_o \geq 3\sigma(F)$.

Heavy-atom method, anisotropic full-matrix leastsquares refinement on F for all non-H atoms of ligand except C atoms linked to N(3) and benzene atoms; three new peaks found at bond distances from N(3) and nine H atoms from difference Fourier synthesis; benzene C atoms isotropic; nine H atoms isotropic with fixed temperature factor $U 0.08 \text{ Å}^2$. Two sets of positions for the atoms C(17), C(20) and C(21) around N(3) were found. They were interpreted as a statistical disorder in

Table 1. Fractional coordinates $(\times 10^4)$ and equivalent values U_{eq} of the anisotropic temperature factors U_{ij} or values of the isotropic temperature factors U (Å² × 10^4) with e.s.d.'s in parentheses

$U_{\rm eq} = \frac{1}{3}(U_{11} + U_{22} + U_{33}).$									
	x	у	Z	U_{eo}/U	Occupancy				
Cu	3879(1)	6266 (1)	2430(1)	512 (9)					
O(1)	3864 (5)	6497 (4)	4086 (6)	657 (56)	1				
0(2)	3776 (5)	6715 (4)	873 (6)	655 (53)	1				
N(1)	2403 (6)	6089 (5)	2308 (8)	584 (60)	1				
N(2)	5374 (6)	6338 (5)	2513 (7)	559 (56)	1				
N(3)	4062 (8)	4874 (5)	2333 (7)	723 (80)	1				
C(1)	2060 (7)	6756 (6)	4119 (9)	477 (69)	1				
C(2)	3079 (8)	6793 (6)	4607 (9)	512 (78)	1				
C(3)	3247 (9)	7123 (6)	5753 (10)	614 (82)	1				
C(4)	2476 (11)	7426 (7)	6318 (11)	729 (100)	1				
C(5)	1479 (9)	7427 (8)	5813 (13)	814 (108)	1				
C(6)	1245 (9)	7096 (7)	4720 (10)	732 (95)	1				
C(7)	1790 (9)	6377 (7)	3058 (11)	643 (88)	1				
C(8)	5531 (8)	7120 (6)	752 (9)	492 (74)	1				
C(9)	4492 (7)	7080 (6)	357 (9)	525 (77)	1				
C(10)	4231 (9)	7478 (7)	-750 (10)	629 (83)	1				
C(11)	4953 (11)	7861 (7)	-1308 (10)	683 (106)	1				
C(12)	5969 (10)	7887 (7)	-938 (11)	682 (95)	1				
C(13)	6244 (8)	7532 (6)	93 (11)	623 (89)	1				
C(14)	5894 (8)	6729 (7)	1801 (10)	572 (82)	1				
C(15)	1997 (9)	5606 (6)	1317 (9)	538 (97)	1				
C(16)	2188 (12)	4713 (7)	1568 (11)	1021 (140)	1				
C(17)	3041 (18)	4532 (13)	2506 (20)	1033 (91)	0.6458				
C(17)'	5148 (36)	4666 (24)	2127 (38)	1049 (172)	0-3542				
C(18)	5896 (8)	5889 (7)	3483 (9)	657 (78)	1				
C(19)	5895 (11)	4974 (8)	3206 (14)	1071 (129)	1				
C(20)	4779 (18)	4618 (12)	3310 (18)	907 (80)	0-6458				
C(20)'	3463 (34)	4508 (23)	1379 (36)	960 (150)	0.3542				
C(21)	4381 (20)	4670 (14)	1126 (21)	1118 (96)	0.6458				
C(21)'	3870 (32)	4610 (24)	3552 (35)	986 (157)	0.3542				
C(1B)	3820 (10)	8590 (9)	2787 (12)	984 (44)	1				
C(2B)	3769 (11)	8927 (9)	3831 (13)	1044 (45)	1				
C(3B)	3829 (12)	9773 (10)	3996 (14)	1139 (49)	1.				
C(4B)	3941 (12)	10212 (10)	2984 (16)	1274 (55)	1				
C(5B)	3983 (12)	9888 (10)	1880 (15)	1263 (54)	1				
C(6B)	3914 (11)	9022 (9)	1820 (13)	1082 (46)	1				

the Schiff-base aliphatic chains and were refined isotropically with their occupancy factors compelled to reach the overall value of 1.00. All other non-H atoms in the complex molecule were refined anisotropically; final refinement of 293 parameters gave R = 0.073, wR = 0.077, S = 2.33, weighting scheme w = 4.9671/ $[\sigma^2(F_{o}) + 0.000752F_{o}^2];$ max. $\Delta/\sigma = 0.319$ for U C(17)'; all maxima in last $\Delta \rho$ map <0.66 e Å⁻³. Some efflorescence together with the disorder did not allow better results.

Scattering factors for neutral atoms including f' and f" from International Tables for X-ray Crystal-Calculations performed with lography (1974). SHELX76 (Sheldrick, 1976).

Discussion. Positional parameters and U values are given in Table 1.* A view of the structure is shown in Fig. 1. Interatomic distances and bond angles are summarized in Table 2.

^{*} Lists of structure factors, anisotropic thermal parameters and H-atom coordinates have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42679 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

The crystal structure of SALMeDPT-Cu^{II} contains discrete molecules of the complex and benzene molecules in a 1:1 ratio. The coordination sphere around the Cu atom is distorted trigonal bipyramidal. The main deviations from the regular trigonal bipvramid are in the Cu–N(3) distance, 2.337(9) Å [while the other four metal-donor lengths average 1.950 (8) Å], and in the bond angles. In Table 3 selected bond parameters relevant to some SALMeDPT-metal complexes are listed. The most relevant effect is the enlargement of the equatorial O(1)-Cu-O(2) angle up to $145.6(3)^{\circ}$. The O(1)-M-O(2) angle is usually larger than the theoretical value of 120° in all the complexes reported in Table 3 and it increases when the metal is changed in the order $Co^{II} < Fe^{II} < Ni^{II} < Cu^{II}$. It seems that the O(1)-M-O(2) angle increases with the content of 3d electrons on the metal centre but Co^{II} does not follow this order.

The N(1)-Cu-N(3) and N(2)-Cu-N(3) angles are significantly smaller than 90° while the N(1)-Cu-N(2) angle is less than 180°. These distortions are related to the lengthening of the Cu-N(3) bond distance.

Fig. 1. ORTEP (Johnson, 1971) drawing of the title compound with the labelling scheme and ellipsoids at 30% probability. The ellipsoids relevant to C(17)', C(20)' and C(21)' are not reported for clarity.

The benzene molecule is close to the metal centre and it is almost parallel with the O(1), O(2), N(3) plane. The dihedral angle between the two planes is 11.4 (4)° while the Cu¹¹ ion is 0.300 (2) Å away from the benzene plane. One of the benzene C atoms, namely C(1*B*), points towards the metal atom. The contact distance between the metal centre and the calculated position of the H atom on C(1*B*) is 2.90 Å.

Table 2. Bond distances (Å) and angles (°) with their e.s.d.'s

$\begin{array}{c} Cu-O(1)\\ Cu-O(2)\\ Cu-N(1)\\ Cu-N(2)\\ Cu-N(3)\\ O(1)-C(2)\\ N(1)-C(7)\\ N(1)-C(15)\\ N(3)-C(17) \end{array}$	1.950 1.941 1.951 1.957 2.337 1.321 1.309 1.469 1.479	 (7) (7) (8) (9) (11) (14) (12) (24) 	N(3)-C(20) N(3)-C(21) C(1)-C(7) C(15)-C(16) C(16)-C(17) C(19)-C(17)' O(2)-C(9) N(2)-C(14) N(2)-C(18)	1.480 1.517 1.402 1.533 1.533 1.615 1.295 1.279 1.475	(23) (25) (15) (16) (24) (44) (11) (12) (12)	N(3)-C N(3)-C C(8)-C C(18)-C C(19)-C C(16)-C	(17)' (20)' (21)' (14) C(19) C(20) C(20)'	1-498 1-443 (1-510 (1-428 (1-559 (1-589 (1-732 ((44) (42) (41) (14) (17) (24) (43)
C(1)–C(2) C(2)–C(3)	1-416 1-435	(13) (14)	C(3)-C(4) C(4)-C(5)	1•337 1•394	(15) (17)	C(5)–C C(6)–C	(6) (1)	1·391 (1·428 ((17) (13)
C(8)–C(9) C(9)–C(10)	1-407 1-459	(13) (14)	C(10)–C(11) C(11)–C(12)	1.341 1.370	(15) (16)	C(12)-0 C(13)-0	C(13) C(8)	1·356 (1·420 ((15) (13)
C(1 <i>B</i>)–C(2 <i>B</i>) C(2 <i>B</i>)–C(3 <i>B</i>)	1.335 1.425	(17) (19)	C(3B)C(4B) C(4B)C(5B)	1-394 1-387	(19) (20)	C(5B) C(6B)	C(6 <i>B</i>) C(1 <i>B</i>)	1-449 (1-339 ((20) (17)
$\begin{array}{c} {\rm Cu}{=}{\rm O}(1){=}{\rm C}(2\\ {\rm Cu}{=}{\rm N}(1){=}{\rm C}(7\\ {\rm Cu}{=}{\rm N}(1){=}{\rm C}(7\\ {\rm Cu}{=}{\rm N}(3){=}{\rm C}(1)\\ {\rm C}(7){=}{\rm N}(3){=}{\rm C}(2\\ {\rm Cu}{=}{\rm N}(3){=}{\rm C}(2\\ {\rm Cu}{=}{\rm N}(3){=}{\rm C}(2\\ {\rm C}(17){=}{\rm N}(3){=}{\rm C}(2\\ {\rm C}(17){=}{\rm N}(3){=}{\rm C}(2\\ {\rm C}(2){=}{\rm C}(1){=}{\rm C}(2\\ {\rm C}(6){=}{\rm C}(1){=}{\rm C}(2\\ {\rm C}(6){=}{\rm C}(1){=}{\rm C}(2\\ {\rm C}(6){=}{\rm C}(1){=}{\rm C}(2\\ {\rm O}(1){=}{\rm C}(2){=}{\rm C}(1\\ {\rm N}(1){=}{\rm C}(15){=}{\rm C}(16){=}\\ {\rm O}(1){=}{\rm C}(20){=}{\rm C}(20){=}{\rm N}(3){=}{\rm C}(20){=}{\rm C}(20){=}{\rm C}(1){=}{\rm C}(20){=}{\rm C}(1){=}{\rm C}(2){=}{\rm C}(1){=}{\rm C}(2){=}{\rm C}(1){=}{\rm C}(2){=}{\rm C}(1){=}{\rm C}(2){=}{\rm C}(1){=}{\rm C}(2){=}{\rm C}(1){=}{\rm C}(2){=}{\rm C}(2){=}{\rm C}(3){=}{\rm C}(2){=}{\rm C}(3){=}{\rm C}(2){=}{\rm C}(3){=}{\rm C}(2){=}{\rm C}(2){=$)) (15) (15) (17) (10) (20) (221) (21)	$\begin{array}{c} 125.3\\ 123.1\\ 116.4\\ 120.6\\ 106.2\\ 108.1\\ 107.6\\ 108.7\\ 115.7\\ 122.9\\ 115.7\\ 123.0\\ 127.7\\ 123.0\\ 116.7\\ 123.0\\ 116.7\\ 123.0\\ 116.7\\ 116.7\\ 123.0\\ 116.7\\ 11$	(6) (8) (7) (9) (10) (10) (113) (14) (14) (10) (10) (10) (11) (9) (11) (9) (16) (15) (15) (15) (15) (15) (3) (3) (3) (3) (3) (3) (10) (11)		O(1)-O(2)-N(1)-N(1)-O(2)-O(2)-O(2)-O(2)-O(2)-O(2)-O(2)-O(2	$\begin{array}{c} \mathrm{Cu} - \mathrm{N}(i)\\ \mathrm{N}(2) - \mathrm{C}(i)\\ \mathrm{N}(2) - \mathrm{C}(i)\\ \mathrm{N}(2) - \mathrm{C}(i)\\ \mathrm{N}(2) - \mathrm{C}(i)\\ \mathrm{N}(3) - \mathrm{C}(2) - \mathrm{N}(3) - \mathrm{C}(2) - \mathrm{N}(3) - \mathrm{C}(3) - \mathrm{C}(2) - \mathrm{C}(3) - \mathrm{C}(2) - \mathrm{C}(3) - \mathrm{C}(2) - \mathrm{C}(3) - \mathrm{C}(2) - \mathrm{C}$	2) 2) 3) 3) 3) 4(4) 8(8) (10) C(18) 7) C(21)' C(2)'	90.8 91.7 174.7 87.2 125.0 114.7 120.3 109.8 109.8 107.4 118.7 119.9 109.8 109.7 100.7 100.7 100.7 100.7 100.7 100	(3) (3) (4) (4) (3) (6) (7) (7) (9) (16) (16) (16) (16) (10) (10) (10) (10) (10) (10) (10) (12) (11) (11)
C(3)-C(4)-C(0) C(4)-C(5)-C(0)	5) 6)	120.9	(12) (11)		C(10) C(11)	-C(11)- -C(12)-	C(12) C(13)	124.6 (117.1 ((11) (11) (11)
C(5)–C(6)–C(C(6)–C(1)–C(1) 2)	118-0 120-3	(10) (10)		C(12)- C(13)-	-C(13)- -C(8)-C	·C(8) C(9)	122-3 (120-4 ((11) (10)

Table 3. Geometrical parameters in some SALMeDPT- M^{II} complexes with parameters relevant to Cu(mbp) included for comparison [mbp = N,N'-4-azaheptane-1,7-diylbis(2-hydroxy-5-methylbenzophenone iminato)]

	Fe ^a	Co(α) ^{<i>b</i>}	Co(β) ^b	Co(y) ^c	Ni ^d	Cu	Cu(mbp) ^e
MO(1) (Á)	1.954 (4)	1.953 (6)	1.971 (9)	1.97 (1)	1.956 (7)	1.950 (7)	1.925 (5)
M-O(2)	1.951 (3)	1.941 (6)	1.952 (8)	1.96 (1)	1.954 (7)	1.941 (7)	1.951 (5)
M-N(1)	2.096 (4)	2.058 (7)	2.069 (9)	2.05 (2)	2.017 (8)	1.951 (8)	1.983 (5)
<i>M</i> -N(2)	2.090 (4)	2.064 (7)	2.064 (10)	2.03 (1)	2.001 (7)	1.957 (8)	1.951 (5)
<i>M</i> -N(3)	2.190 (4)	2.135 (7)	2.170 (9)	2.15(1)	2.086 (8)	2-337 (9)	2.374 (10)
O(1)-M-O(2) (°)	136-9 (2)	127.9 (3)	126-9 (3)	129.8 (4)	140.6 (3)	145.6 (3)	152.2 (3)
N(1) - M - N(2)	177.2 (2)	179.6 (2)	176-8 (4)	179.0 (5)	177.0 (3)	174.7 (4)	174.9 (3)
O(1) - M - N(3)	111-3 (2)	115-9 (3)	116-4 (4)	114-1 (5)	113.5 (3)	104-5 (3)	106.5 (3)
O(2) - M - N(3)	111-8 (2)	116-2 (3)	116.6 (4)	116-1 (5)	105-9 (3)	109-9 (3)	101.0 (3)
N(1) - M - N(3)	88-2 (2)	90.0 (3)	88-9 (4)	89.7 (6)	91.1 (3)	87-2 (4)	88.9 (3)
N(2)MN(3)	89-0 (2)	89.7 (3)	88.3 (4)	89.4 (6)	91.8 (3)	87.6 (3)	86.2 (3)

(a) Cini (1983); (b) Cini & Orioli (1982); (c) Zanello et al. (1983); (d) Di Vaira, Orioli & Sacconi (1971); (e) Freyberg, Mockler & Sinn (1976).

References

CINI, R. (1983). Inorg. Chim. Acta, 73, 147-152.

CINI, R. & ORIOLI, P. L. (1982). Inorg. Chim. Acta, 63, 243-248.

- CINI, R. & ORIOLI, P. L. (1983). J. Chem. Soc. Dalton Trans pp. 2563-2568.
- DI VAIRA, M., ORIOLI, P. L. & SACCONI, L. (1971). Inorg. Chem. 10, 553-558.
- FREYBERG, D. P., MOCKLER, G. M. & SINN, E. (1976). J. Chem. Soc. Dalton Trans. pp. 447-454.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- JOHNSON, C. K. (1971). ORTEP. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee.
- SACCONI, L. & BERTINI, I. (1966). J. Am. Chem. Soc. 88, 5180-5186.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- ZANELLO, P., CINI, R., CINQUANTINI, A. & ORIOLI, P. L. (1983). J. Chem. Soc. Dalton Trans. pp. 2159–2166.

Acta Cryst. (1986). C42, 553-557

trans-Bis[dimethylglyoximato(1–)-*N*,*N*[']]bis(pyrrolidine-*N*)cobalt(III) Chloride, *trans*-Chlorobis[dimethylglyoximato(1–)-*N*,*N*[']](pyrrolidine-*N*)cobalt(III) and *trans*-(Benzyl)bis[dimethylglyoximato(1–)-*N*,*N*[']](pyrrolidine-*N*)cobalt(III)*

BY S. K. TYRLIK, † A. T. H. LENSTRA, J. F. J. VAN LOOCK AND H. J. GEISE‡

University of Antwerp (UIA), Department of Chemistry, Universiteitsplein 1, B-2610 Wilrijk, Belgium

AND R. A. DOMMISSE

University of Antwerp (RUCA), Laboratory for Organic Chemistry, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

(Received 30 September 1985; accepted 19 November 1985)

Abstract. (I): $[Co(C_4H_7N_2O_2)_2(C_4H_9N)_2]Cl, M_r =$ 466.8, C2/c, a = 18.474 (4), b = 12.751 (1), c =9.380 (1) Å, $\beta = 107.90$ (1)°, V = 2103 (1) Å³, Z = 4, $D_{\rm r} = 1.48 \text{ Mg m}^{-3}$, Mo Ka, $\lambda = 0.71069 \text{ Å}$, $\mu =$ 1.01 mm^{-1} , F(000) = 984, room temperature, wR =0.041 for 1569 reflections. (II): $[Co(C_4H_7N_2O_2)_2]$ $Cl(C_4H_9N)$], $M_r = 395.7$, $P2_12_12_1$, a = 9.489 (3), b =12.411 (4), c = 14.595 (4) Å, V = 1719 (1) Å³, Z = 4, $D_x = 1.53 \text{ Mg m}^{-3}$, Mo Ka, $\mu = 1.22 \text{ mm}^{-1}$, F(000) = 824, room temperature, wR = 0.044 for 1329 reflections. (III): $[Co(C_7H_7)(C_4H_7N_2O_2)_2(C_4H_9N)], M_r =$ 451.4 (1), $P2_12_12_1$, a = 11.546 (3), b = 11.724 (4), c = 15.694 (4) Å, V = 2124 (1) Å³, Z = 4, $D_x = 1.41$ Mg m⁻³, Mo K α , $\mu = 0.88$ mm⁻¹, F(000) = 952, room temperature, wR = 0.039 for 1080 reflections. Ground-state trans effects are observed. With the Co-N(pyr) distance in (I) as reference, the Co-N(pyr)in (II) is only slightly larger, but in (III) it is significantly elongated, in keeping with the weak σ -donor ability of the chlorine compared to the benzyl ligand. Comparison of the title compounds with other

cobaloximes shows indications of ground-state *cis* effects, namely in the correlation between the larger Co-N(axial) and the smaller Co-N(equatorial) and in the shifts of the Co atoms from the plane of the four equatorial N atoms. The possibility of a ligand-induced proton shift in (II) and (III) is discussed.

Introduction. Transformation of, for example, an octahedral complex ML_6 (M: metal; L: ligand) into ML_5X causes a change in the properties of the ligands L, whilst the substituent effects of X on L are different for trans- and cis-positioned ligands L relative to X. Such cis and trans interactions influence ground-state properties as well as thermodynamic and kinetic characteristics. Unfortunately there is an excessive number of terms used in the literature to correlate the mutual influence of ligands on the properties concerned. We will follow the recommendations of Buchler, Kokisch & Smith (1978) and adhere to the terminology used by Hill, Pratt & Williams (see e.g. Philips & Williams, 1966), i.e. we will use the term ground-state trans/cis effect in connection with geometrical and spectroscopic properties.

Cobaloximes – Co(Hdmg)₂LX, with Hdmg the monoanion of dimethylglyoxime – are studied because they can be considered as model compounds for vitamin B_{12} and because by analogy with vitamin B_{12}

© 1986 International Union of Crystallography

^{*} Dimethylglyoxime is 2,3-butanedione dioxime.

[†] On leave from Laboratory of Homogenous Catalysis, Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 00-961 Warszawa, Poland.

[‡] Author to whom correspondence should be addressed.